文章来源:《Science News》
原文见刊日期:2022年1月29日
For a testament to the power of materials to connect us, just look at an iPhone. “The iPhone contains about 75 elements from the periodic table — a huge proportion of all the atoms that we know about in the universe are in an iPhone,” says Anna Ploszajski, a materials scientist.
要证明材料连接我们的力量,只需看看iPhone。材料科学家Ploszajski说:“iPhone含有元素周期表中的大约75种元素——我们所知道的宇宙中所有原子种类的很大一部分都在iPhone中。”
Some of those are rare-earth elements, a set of 17 metallic elements mostly on the outskirts of the periodic table. Though they are difficult to mine and process, rare earths are sought after because they lend unusual magnetic and electrical properties to materials made from them. Neodymium, for example, mixed with other metals makes the strongest magnets known. These magnets make your cell phone vibrate and its speakers produce sound.
其中一些是稀土元素,由17种金属元素组成,大多位于元素周期表的外围。尽管稀土很难开采和加工,但由于稀土材料具有不同寻常的磁性和电学特性,因此受到人们的追捧。例如,钕与其他金属混合后形成了已知最强的磁体。正是这样的磁体使你的手机振动,扬声器发出声音。
Despite the hazards associated with mining them, these elements show up in a lot of other 20th century applications too. Rare earths are in color televisions, camera lenses, fiber-optic cables, nuclear reactors, nickel-metal hydride batteries, aircraft engines and much more.
尽管开采稀土有危险,但这些元素在20世纪的许多其他应用中也出现了。稀土被用于彩电、相机镜头、光纤电缆、核反应堆、镍氢电池、飞机发动机等等。
A more familiar element — silicon — is the reason cell phones and laptops are available in such a widespread way. As a semiconductor, silicon conducts electricity better than glass do, but not as well as metals. This in-between status makes it possible to control how electrons zip around a semiconductor, a control that’s ideal for creating electrical switches for circuits in radios, televisions or computers. In the 1930s and ’40s, these and other electronic devices relied on bulky, breakable glass vacuum tubes to control electric current flow. Decades of semiconductor research pointed to a more reliable, slimmer way.
我们更熟悉的元素——硅——是手机和笔记本电脑如此广泛使用的原因。作为半导体,硅的导电性比玻璃好,但不如金属。这种介于两者之间的状态使得控制电子如何在半导体中穿梭成为可能,这种控制对于为收音机、电视或电脑的电路创建电子开关是非常理想的。在20世纪30年代和40年代,电子设备依靠笨重、易碎的玻璃真空管来控制电流流动。几十年的半导体研究指出了一种更可靠、更小的方式。
The first semiconductor switch, dubbed the transistor, was made of germanium and invented at Bell Laboratories in 1947. But teams at Texas Instruments and Bell Labs were both eyeing silicon, which holds up under higher temperatures. Silicon is also less likely than germanium to leak current when a switch is off. Though the two teams independently developed silicon transistors, Texas Instruments’ Gordon Teal gets the credit as his announcement came first, in May 1954.
第一个半导体开关被称为晶体管,由锗制成,1947年在贝尔实验室发明。但德州仪器公司和贝尔实验室的研究团队都盯上了硅,因为硅能在更高的温度下保持不变。当开关关闭时,硅比锗更不容易漏电。虽然这两个团队独立开发了硅晶体管,但德克萨斯仪器公司的戈登·蒂尔获得了荣誉,因为他在1954年5月首先宣布这一消息。
Our attention-sucking phones are right in front of our faces. But out of sight are the fiber optics that relay messages around the world in a flash.
吸引我们注意力的手机就在我们面前。但人们看不到的是能在瞬间将信息传递到世界各地的光纤。
All the glass strung out in the world’s optical cables could tether Earth to Uranus and then some, stretching some 4 billion kilometers. These cables ferry messages across countries and continents and across the seafloor. Optical fiber “really has strung the world together in a new way,” says Ainissa Ramirez, a materials scientist. Messages from across the Atlantic used to come by boat, she says, then came copper cables to relay telegraph dispatches in the 1840s. The first live telephone traffic sent through fiber-optic cables was in 1977 in Long Beach, Calif. Now e-mails from abroad arrive nearly instantaneously thanks to thin-as-hair optical fibers.
世界上所有的玻璃光缆连成一条线,总长度约40亿公里,可以把地球和天王星连在一起,还有一些富余。这些电缆跨越国家、大陆和海底传递信息。光纤“确实以一种新的方式把世界连接在了一起,”材料科学家Ramirez说。她说,过去,来自大西洋彼岸的信息是通过船只来传递的,然后在19世纪40年代,有了铜电缆来传递电报。第一个通过光纤传输的实时电话是1977年在加利福尼亚州长滩。现在,由于有了像头发一样细的光纤,来自国外的电子邮件几乎可以瞬间送达。